skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kimmel, Samuel W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acidic oxygen evolution reaction (OER) electrocatalysts that provide high activity, lower costs, and long-term stability are needed for the wide-scale adoption of proton-exchange membrane (PEM) water electrolyzers for generating hydrogen through electrochemical water splitting. We report the effects of chromium substitution and temperature treatments on the structure, OER activity, and electrochemical stability of ruthenium oxide (RuO2) aerogel OER electrocatalysts. RuO2 and Cr-substituted RuO2 aerogels (Ru0.6Cr0.4O2) were synthesized using sol–gel chemistry and then thermally treated at different temperatures. Introducing chromium into the synthesis increased the surface area (7–11 times higher) and pore volume (5–6 times higher) relative to RuO2 aerogels. X-ray diffraction analysis is consistent with s that Cr was substituted into the rutile RuO2 structure. X-ray photoelectron spectroscopy showed that trivalent Cr substitution altered the surface electronic structure and ratio of surface hydroxides. The specific capacitance values of Cr-substituted RuO2 aerogels were consistent with charge storage within a hydrous surface. Cr-substituted RuO2 aerogels exhibited 26 times the OER mass activity and 3.5 times the OER specific activity of RuO2 aerogels. Electrochemical stability tests show that Cr-substituted RuO2 aerogels exhibit similar stability to commercial RuO2. Understanding how metal substituents can be used to alter OER activity and stability furthers our ability to obtain highly active, durable, and lower-cost OER electrocatalysts for PEM electrolyzers. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Nanosheets composed of stacked atomic layers exhibit unique magnetic, electrical, and electrochemical properties. Here, we report the effect of iron substitution on the structure and magnetism of nickel hydroxide, Ni(OH)2, nanosheets. Ni(OH)2 and iron-substituted Ni(OH)2 (5, 10, 20, and 50 atomic % Fe substitution) were synthesized using a rapid microwave-assisted hydrothermal process. Scanning and transmission electron microscopy show the materials are polycrystalline nanosheets that aggregate into micron-sized clusters. From X-ray diffraction characterization, iron substitutes into the α-Ni(OH)2 lattice up to 20 at. % substitution. The nanosheets exhibit different in-plane and through-plane domain sizes, and Fe substitution affects the nanocrystallite shape anisotropy. The magnetic response differs with Fe substitution: 0% and 5% Fe are ferromagnetic, while samples with 10% and 20% Fe are ferrimagnetic. The competing interactions between magnetization sublattices and the magnetic anisotropy due to the crystalline and shape anisotropy of the nanosheets lead to magnetization reversal at low temperatures. The correlation between higher coercivity and larger nanocrystalline size anisotropy with higher Fe % supports that magnetic anisotropy contributes to the observed ferrimagnetism. The interplay of morphology and magnetic response with Fe-substituted Ni(OH)2 nanosheets points to new ways to influence electron interactions in layered materials which has implications for batteries, catalysis, sensors, and electronics. 
    more » « less